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RELAXATIONAL PROPERTIES OF A TURBULENT SHEAR FLOW ACROSS 

A CYLINDER IN THE PRESENCE OF A PLATE 

V. I. Kornilov and D. K. Mekler UDC 532.526.4 

With the use of semi-empirical turbulence models to analyze essentially nonequilibrium 
turbulent boundary layers in the last decade, there have been increasingly frequent complaints 
about the inadequacy of the traditional approaches that have been employed to solve such pro- 
blems [i]. One reason for this dissatisfaction is the local nature of the turbulence hypo- 
theses for the external region, which is characterized by the presence of large, long-lived 
eddies - the main sources of information on perturbations. In connection with this, the Bous- 
sinesq approximation proves to be inadequate for the analysis of flows in this region. As 
regards the internal region - characterized by small-scale turbulence and offering less in- 
formation on perturbations - the use of the Boussinesq hypothesis is obviously valid. This 
shows the need to resort to the use of a relaxation theory (heredity theory) based on a new 
formula for turbulent shear stress that will make it possible to account for the history (mem- 
ory) of the boundary layer in regard to a given disturbance. By relaxation, in the process 
by which some physical quantity derived from the equilibrium state returns to this state [2]. 

The first attempt to account for relaxation processes in turbulent shear flows was made 
by Hinze [3] by means of an equation that was also derived and analyzed in detail in [2]. 
The equation is based on a generalization of the Maxwell model to the case of turbulent motion: 

* ~  ~ L~o~/Oy+~-~" -ho~/oy, (1) L~au v/a + ,~.--7:-_, 

where L~ and L~ are  the l o n g i t u d i n a l  and t r a n s v e r s e  r e l a x a t i o n  paths ,  having the dimension 

of length; u~v' is the turbulent shear stress; u is velocity; v t is eddy viscosity; the super- 
imposed bar denotes averaging over time. 

In the solution of the relaxation equation, the quantities L~ and L~ are preassigned func- 
tions of thelongitudinal coordinate x and transverse coordinate y even in the case of two- 
dimensional nongradient flow. However, this question has yet to be fully resolved, since 
the amount of reliable data now available on the laws governing the change in relaxation 
length is clearly inadequate. There is also no systematic data on the effect of the form of 
the source of perturbations and its relative dimensions on relaxation processes in shear 
flows. On the other hand, the study of the structure of a flow past different types of pro- 
jections, irregularities, and obstacles is of interest in its own right - especially from the 
viewpoint of solving a whole range of practical problems [4, 5]. Thus, the tendency seen in 
recent years to account for relaxation phenomena in the analysis of nonequilibrium turbulent 
boundary layers requires more intensive study of the hydrodynamic structure of shear flows 
beyond perturbation sources of different geometries. Also required in this connection is de- 
termination of the laws which govern the change in the characteristic relaxation lengths under 
given conditions. 

In the present study, we analyze the possibility of using the Hinze relaxation equation 
for a nonequilibrium turbulent shear flow which develops after the fluid crosses a circular 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Noo 
6, pp. 61-67, November-December, 1990. Original article submitted January i, 1989; revision 
submitted May ii, 1989. 

854 0021-8944/90/3106-0854512.50 �9 1991 Plenum Publishing Corporation 



o, o5o 

o, o2s 
o 

I ] i i 

0,2 0,4 o,s o.a ~/~o.99s 

Fig. i 

cylinder in the transverse direction. In the case we will examine, the cylinder is located 
in the boundary layer of a flat plate. 

The test were conducted on the T-324 low-turbulence subsonic wind tunnel at the ITPM SO 
AN SSSR (Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Academy of 
Sciencs of the USSR) [6]. The velocity of the undisturbed flow U= = 25 m/see, which corres- 
ponded to aReynolds number Re I = 1.66.106 m -I at a distance of im from the inlet. The measurements 
were made on a model in the form of a flat plate with the dimensions 2500 x 993 mm in plan. 
The thickness of the plate was 6 mm. Theplate was positioned horizontally in the working 
part of the tunnel [7]. As the source of the disturbances, we used a circular cylinder 
positioned so that the flow moved tranversely relative to it. The cylinder was located in 
the developed turbulent boundary layer of the plate at a distance of about 600 mm from the 
leading edge. The relative diameter of the cylinder was discretely varied within the range 
D/60 = 0.113-0.388, while its position over the height of the layer was Y0 = Y0/60 = 0.094- 
0.94~ where 6 o is the thickness of the boundary layer at the location of the cylinder. This 
thickness was equal to 10.6 mm. 

We used an instrument complex made by the DISA company to measure mean velocity u at 
the test point of the flow field, the integral intensity of the velocity pulsations /~,2 and 

the turbulent shear stresses u'v' in the wake past the cylinder. Here, the transducers were 
miniature one- and two-wire anemometers with sensitive elements in the form of tunKsten wires 
5 ~m in diameter and 1 mm in length and Wollaston wires having a working section 5 Hm in diam- 
eter and 0.65 mm in length. The wires were prepared by the technology described in [8]. 
The experimental method and the results of certain procedural studes were detailed in [7]. 
We will stop here briefly to discuss the result from [7] that we deem to be the most important, 
since it summarizes the measurements of several parameters. We are speaking of the data on 
the distribution of dimensionless eddy viscosity v t over the height of the boundary layer. 
This data is shown in Fig. 1 for the longitudinal coordinates x = 1800 mm (dark circles) and 
2108 mm (clear circles) in the case when the cylinder is absent as a source of perturbations. 

Here, us ~ is dynamic velocity; 6o.999 is the thickness of the boundary layer calcu- 
lated as the distance y from the plate surface, where u/u e = 0.999 (the subscript e charac- 
terizes the external boundary of the layer: the superimposed bar denoting the averaging of 
velocity over time will henceforth be omitted for the sake of simplicity). The x~s show ex- 
perimental values of ~t from [9], while the dashed line shows the change in the sought func- 
tion in accordance with the linear Prandtl theory. 

It is known that the quantity v t is extremely sensitive to the method of measurement and 
measurement errors and thus serves as reliable indicator of the correctness of the solution. 
The good agreement with [9] and the Prandtl theory in the boundary region of the flow is evi- 
dence of the reliability of the results and the possibility of using the given method to 
study the structure of the flow in the wake beyond the cylinder. 

With the source of perturbations present, we obtained detailed measurements of the dis- 
tribution of static pressure along the surface in the flow in the experiments. We also 
measured the magnitude and direction of the velocity vector of the shear flow and turbulence 
parameters at an average of 15 stations downstream from the surface. The resulting data al- 
lowed us to establish the pattern of development of the flow over the cylinder in the boundary 
layer of the plate. This pattern is schematized in Fig. 2 for D/60 = 0.377 and 9o = 0.188, 
i.e., when the cylinder was located directly on the surface. 
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On the whole, the hydrodynamic structure of the flow for this case is very similar to 
that seen in the case of flow past an obstacle of height H located on a flat surface [10]. 
Several characteristic stages of flow development can be discerned in this case: separation 
of the flow on the cylinder, the formation of a primary recirculation zone, and the forma- 
tion of the main recirculation zone - the length of which Ax/D corresponds to a value of 
approximately 8 as measured from the axis of the cylinder (region 1); attachment of separated 
flow to the surface of the plate and the formation of a new (internal) layer of thickness 6in 
(region 2); relaxation of the flow to the state of complete equilibrium at Axe/D = (600-700) 
(region 3). 

Complex mass transfer processes take place at each of these stages, these processes being 
connected both with each other and with external flow conditions (such as with the initial 
intensity of the perturbations dictated by the form and dimensions of the perturbation 
source). In particular, the interaction of the external flow and the flow in the recircula- 
tion region leads to the formation of a mixing layer (region 4) characterized by maximal 

momentum transfer - u'V'ma x. The position of the conditional axis of this layer along the 
investigated region is shown by line 5. The hatched region 6 shows the zone of maximum 

generation turbulence energy, characterized by the term (_~r~O~/Oy) D/u~. Here, 8u/By is 
the gradient of mean velocity in the direction of the y axis. Within the indicated bound- 
aries, the intensity of this quantity decreases by a factor of approximately 40 in the long- 
itudinal direction. Meanwhile, the highest level of turbulence generation is observed im- 
mediately after the cylinder. This shows that the main source of turbulence is separation 
of the flow. 

Let us ~discuss the presence of compression of the flow (throat) in the region 0 < Ax/ 
D ~ 8. This compression is evident when we look at the example of the distribution of lines 
of equal velocity u/u e = const (see Fig. 2a, where lines 7 corresponds to u/u e -0.i; 8-0.4; 
9-0.6; 10-0.8; 11-0.9; 12-0.99). The effect under discussion actually means that there is 
an increase in flow velocity in the longitudinal direction, this increase being followed by 
a decrease. An analysis shows that the given phenomenon is due mainly to a rapid increase 
in the thickness of the boundary layer in the indicated region (line 13) and, thus, with 
a displacement that assists in the above-mentioned acceleration of the flow. Also quite 
visible here is the flow recirculation region, characterized by a negative sign of relative 
velocity u/u e. 

As regards the formation of a new (internal) layer, logarithmic and external regions 
develop along with the main regions in the velocity profiles. Evidence of this comes from 
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the representation of velocity beyond the attachment point in the form of a wall law. Here, 
the external region of the new layer is the buffer region of the main layer. Signs of the 
presence of an internal layer can even be seen at a distance Ax corresponding to several. 
tens of cylinder diameters. 

In contrast to the near wake - in which the structure of the flow is determined to a 
considerable extent by speration phenomena - the character of flow below the point of at- 
tachment depends on the laws which govern the return of the parameters of the flow to the state 
of complete~hydrodynamic equilibrium. These values of the parameters are denoted by the sub- 
cript e in Fig. 2. As is shown by data on the distribution of the disequilibrium parameter 
[7], this flow region is the longest region and has a length on the order of 600-700 cylinder 
diameters. A clear example of the flow relaxation of flow characteristics which takes place 

in this region is the distribution of dimensionless shear stress u'vt/u~ along the lines 
y/60.999 = 0.4 (Fig. 3a) and 0~ (Fig. 3b) (circles) beyond the cylinder D/~ 0 = 0.188 at 
Y0 = 0.094. Beginning with a certain distance Ax/D, the behavior of this relation becomes 
asymptotic. In accordance with heredity theory [2, 3], this region should be regarded as 
relaxational. Closer to the source of perturbations there is a certain transitional flow 

region characterized by a reduction in enthalpy u'v'/u~ with a decrease in ~x/D. The length 
of this region increases going toward the external boundary Of the layer. In particular, 
at Y/~0.999 = 0.8, the boundary of this region corresponds to the condition &x/D :: i00. 
Thus, from the viewpoint of such characteristics as turbulent shear stress and with respect 
to the construction of an appropriate theoretical model, the entire nonequilibrium flow 
region beyond the cylinder can be conditionally divided into three characteristic regions 
(the new layer not included): near wake; transitional region; relaxation region. 

Figure 3 also shows results of calculations (circles) performed within the framework 

of the Boussinesq model: u'v = vtau/ay. Eddy viscosity v t was calculated with the use of 
the two-layer Prandtl-~lauser model [II]: v t = x2y2D(y)~u/#y in the internal region o~ the 
boundary layer; v~ =?Ku~6* ifi the external region. Here, D(y) is the van Dreist damping 
factor; • = 0.4 is the Karman constant; K = 0.0168 is an empirical coefficient; ~=~ is the 
displacement thickness; u e is velocity on the external boundary of the boundary layer; 
y = [i + C(y/6)b]-l(C = 6 and b = 7.5 are empirical coefficients obtained from an analysis 
of the experimental data in [9]). The derivative 8u/By was determined by graphic differen- 
tiation of experimental profiles of velocity at the analyzed point of the flow field. The 
boundary between the internal and external regions of the boundary layer was found on the 
basis of the best agreement between the results obtained from the Prandtl theory and the, 
Clauser hypothesis for the same value of the transverse coordinate y. 

It is evident that, in contrast to the case of an equilibrium flow (where the local 
two-layer model satisfactorily describes the distribution of turbulent stresses in the 
boundary layer [12]), similar results in the relaxation region ~how that the given model 
is almost completely unsuited for predicting nonequilibrium flows. Under the conditions 
we have studied here, the difference between the experimental and theoretical values of 

u'v'/u~ is 30-50%, depending on the relative coordinate Y/60.999. This difference 
naturally becomes smaller as we increase the relative distance &x/D. We should point out 
that the deviation of the theoretical results from the experimental data increases with an 
increase in the dimensionless coordinate y/60.999 (see Fig. 3a and b). This means t]hat the 
relative contribution of memory effects increases in the direction of the external boundary 
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of the boundary layer. In other words, large-scale turbulence has a greater capacity to 
remember previous flow states, i.e., it has a "longer" memory for perturbations generated 
by a two-dimensional source. Thus, when calculations such as the above are being performed, 
it is necessary to account for hereditary characteristics of the flow or its history. 

As was noted above, one way of simplifyin$ the evaluation of flow memory is to use the 
relaxation equation (i). Assuming that L~ >> L~, we solved the equation for eddy viscosity 
v t. The latter quantity was determined in such a way that, by appropriately selecting the 
relation for the longitudinal relaxation length L~, we ensured that the relationship between 
the turbulence characteristics and the mean velocity over the height of the boundary layer 
was universal. An example of this approach is shown in Fig. 4 for the case of flow past a 
cylinder D/~ 0 = 0.188 placed directly on the surface of a plate. Here, Y0 = 0.094. The 
points 1-8 in the figure correspond to Ax/D = 30, 50, 75, i00, 155, 200, 300, 400. It can 
be seen that within a certain spread (shown by thehatched boundaries) there is a single rela, 
tion wu/u~D = f(Y/60.999), for different Ax/D. In this range, the longitudinal relaxation length 
is expressed in the form L~ = aAx (e~0,4). The latter us evidence of the presence of similar- 
ity i~ the relations between the turbulence charcteristics and the mean velocity profile in 
the nonequilibrium flow region. Only in the central part of the layer is the universal charac- 
ter of the relations disturbed somewhat. This occurs because the quantity L~ was assumed to 
be constant over the height of the layer. Strictly speaking, it is not, since the coef ~ 
ficient a actually fncreases slightly in the direction of the external boundary of the layer 
and the function L~ = f(Ax) is nonlinear. However, use of the given relation in linear form 
is acceptable for approximate practical calculations. 

A more important question in our minds is whether the coefficient a changes or remains 
constant for two-dimensional sources of different geometries and relative dimensions. In 
connection with this, we used the value of L~ obtained with a = 0.4 to calculate the turbu- 

lent shear stresses u'v' directly from the Hinze relaxation equation in the wake after a 
large-diameter cylinder (D/60 = 0.377) at Y0 = 0.188. The results of these calculations 

are shown in Fig. 5 (line) in the form of the relation u--F~v'/ug = f(Ax/d) for two values of 
the transverse coordinate y/60.99, where the role of flow history is important. The light 
(Y/60.99 = 0.7) and dark (Y/60.99 = 0.8) circles show data from measurements of the shear 
stresses. The lack of theoretical data for Ax/D 5 i00 is due to the existence of a transi- 
tional flow region in which the hereditary model [2, 3] is invalid. On the other hand, 

in the relaxation region (Ax/D ~ i00) the theoreticalvalues of u'v'/u~ agree satisfactorily 
with the measurement results with an error no greater than about 10%, Such a deviation can 
probably be considered acceptable for such turbulence characteristics. It is also very sig- 
nificant that an expression for L~ with a coefficient.a close to 0.4 was_obtained experimental- 
ly in [I0] for flow past a rectangular obstacle with a relative height H = H/60 ~ 0.25 when 
it was placed on a flat surface. All this suggests that the relation for longitudinal relax- 
ation length does not change in the case of flow past sources of perturbations with a rela- 
tive height D/60 ! 0.4 and depends only slightly or not at all on the shape of the source - 
at least at the flow velocities studied here. Thus, the expression for L~ presented above 
is valid in practical calculations of turbulent shear stresses in nonequilibrium flows 
based on the Hinze relaxation equation. However, in order to reach a definitive conclusion 
regarding this matter, it will be necessary to obtains systematic data for sources of perturba- 
tions of different shapes. 
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